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A CONSTRUCTIVE NODAL OF IMPACT WITH FR~&TION* 

A.P. IVANOV 

The stereomechanical impact of rough bodies is described by a model. 
based on specifying the impact forces as a function of the deformations 

(e.g., by analoqy with the properties of a visco-elastic medium). The 
coefficients of friction and restitution relative to the velocity are not 
specified in advance, so that their dependence on the initial conditions 
can be studied. Earlier, impact with friction was studied /l-3/ by means 
of a formally axiomatic approach. The present model is simpler and in 
better agreement with experimental data {e.g., /4/j. 

1. Formulation of the problem. We consider a mechanical system in configuration 
space XE R", with kinetic energy T =',x'A (x)x' T,A "_ Rn*,generalized forces Q (x, x’) s R”, 
and positional relation f(x)> 0. For a system of two rigid bodies, the latter means that 
points of the bodies cannot simultaneously occupy the same positions in space; f is the dis- 
tance between the bodies. 

If, at an instant t = to we have 

f(x)-=& f.(x)=~~xj.<O 
I=, J 

impact occurs in the system. We make the assumptions of stereomechanical theory /5/, that 
we can neglect both the duration of the impact and the accompanying wave processes. Then, 
the pre- and post-impact values of the coordinates x_ and x, are the same, and description 
of the impact amounts to finding the dependence of x,' and x_‘. 

Lagrange's equations for the impact are /1/ 

where I 

The 
Newton's 

where x 

Ax'.4 (xc)= 1. xO=x(tO), Ax' = x; - x_' (1.1) 

is the impact momentum. 
determination of i is usually based on certain postulates /l-3/. They include 
hypothesis that the impact has two phases, in which 

(x,',N)=--x(x_',N), O<st<l (1.2) 

is the coefficient of restituion, and N is the normal vector to the surface j(x) = 0 
at the point x". The second postulate, about the Coulomb nature of the impact friction, as- 

serts that, during the entire impact,the normal and tangential stresses are connected by 
Coulomb's law /l/. Together, these two assumptions enable the dependence of x+' and x_' 

to be uniquely defined /3.-3/, though the dependence is so complicated thatexplicitexpressions 

can only be obtained in rhe simplest special cases /6/. 

Another approach to describing stereomechanical impact is to use physical models of the 

impact forces. The condition f(x)> 0 is then assumed to be violated during the impact (so 

that --j(x) _ e. E < I), which corresponds to defromation of the bodies. For f< 0 the 

impact forces are defined as functions of the deformations. Termination of the impact corre- 

sponds to a change of sign of the function f from minus to plus. This approach is useful when 

the axiomatic description is ill-posed /7/. 
A constructive approach was used in /8/ to describe the impact of smooth bodies. Our 

present task is to study impact with friction on this basis. 

2. Description of the model. since the special features of the body shape and 

motion may determine the choice of generalized coordinates, the latter may in general be non- 

orthogonal /9/. Thus, the metric concepts of orthogonality and norm are defined in the sense 

of the scalar product 

(a, b)===aA(~~,bT, a, b -_ I?" (2.4) 

which is invariant under the choice of the generalized coordinates. 
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The normal vector to the surface f(x) = 0 at the point x0 is N ==grad~*A-"(xO), while 
the tangential and normal components of the impact momentum are given by 

I,=& n)n, 1,=1--I,, n==N/INI, INi==(N,N)':* 

The surfaces of rough bodies are usually divided into macro- and imicrostructures /lo/, 
where the forner depends on the geometrical shape, while the latter is only known statistically. 
We can then write the positional relation f in the form 

&O-&, N'=grnd$.A-'(x0). (2.2) 

where the basic surface is given by the equation f"== 0 (or in normalized form, f*’ = 0), while 
the microrelief is given by the function g(x), which is randomly chosen from a functional 
space G with probability measure P; we shall assume that 1 g(x)/ < er< 1,g~ G. The meaning 
of the normalization in (2.2) will be explained later, when obtaining Eq.(2.4). 

Let us compare the mutual arrangement of the surfaces f=O and p=O. If P (x0) = 0, 
then by Taylor's formula 

The equation ,#(x"+h)=O, i.e., ~,*(~“+h)=g(r~-j-hf, takes the form 

(h,N"/lN"j)=~(x"ih)~ollhl) 

Thus, g describes the height of the rough surface profile above the basic profile,calcu- 
lated in the direction of the normal to the latter. 

To find the generalized forces with f<O we use the Kelvin-Voigt /5/ model to a visco- 
elastic medium, putting 

Q*=-(M2f+2kMf')gradf, Ogk<i, IW>Z (2.3) 

Neglecting in the equations of motion with f+<O the finite generalized forces Q and 
the small orders E, 8,. and using the normalization of (2.21, we obtain the relation 

f" =(x", N)=(Q*A-1(x'), N)= - (ni9xj 1" 2k&fZlf') (2.4) 

On solving (2.4) under the initial conditions f(t")=O, ‘(t”)=f,‘, we have 

f = fy’W’ (1 -k2)-'i~ sin [M(l -k’)‘f* (t-t3)lesp [-k,%f(t-- t)l (2.5) 

Corresponding to the interval of impact to < t <to +r, we have f<o, so that t = z~~f-~ 
(1 - k”)+. 

We find 1 in (1.1) as the mean value 

ia+t 

I= $ dt [Q*&, t)dP(~, x-') 
i; 

(2.6) 

Note that Q* (gv t,J is given by (2.31, (2.5), while dP (g,x_‘) is the probability,which 
depends on x_' of the trajectory x(t) intersecting the surface f(x) = 0 at the point x0 
for a given realization of the microrelief gf G. The nature of this dependence can be seen 
from the following arguments. First, the initial conditions of impact x (f) = x0, x’ (P) =- x_’ 
are in accord, not with all the realizations go G, but only with those for which (N, x_')<O 
(since f >0 before impact). Second, depending on the angle between the vectors x_' and N, 
the projection ds* of the elementary area ds of the tangent plane to the surface j=o at 
the point x0 varies in the direction X_': if x_' and N are collinear, this projection is 
a maximum, while as N varies it decreases in accordancewiththerelation C?S* = - (N,x_')I x_‘~%‘s. 

On normalizing P(g,X_') in such a way that it becomes a probability measure in the set 
c* of admissible realizations of the microrelief, we obtain the final expression for this 
function: 

dP (g, x-7 = (N, x-7 dP (g) / [ (N, x_‘)@ (8) 
d* 

(2.7) 

G* = G f-l @I (N, x-') (01 

On subsituting (2.3), (2.5) and (2.7) into (2.6) and noting that f,‘= (N,x_'), we arrive 
at the following equation of impact with friction: 

Ax'= - (1 + e) L (N, x_‘)~ N dP (g)/ { (N, x_‘) dP (g) 
d* 

(2.6) 
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e = exp [- kn (1 - ka)-‘l:], 0 < e < 1 

To analyse (2.8), some assumptions are needed about the microrelief, i.e., about the 
properties of the probability space (G,P). We assume that it is isotropic, i.e., invariant 
under rotations relative to the vector no of the normal to the surface f"(x) = 0. 

This property implies identities that enable (2.8) to be simplified. We write N as the 
sum N = no cos CL + 1 sin a, where (1,n") = 0, (11 = 1, cc = N-n". We then have 

~1(9)F[a(g_)ldP!g)=O. Fr?CO(X) (2.9) 

j (y, 1 (~))~F[a(g)]l (g)dP(fi)=O, Y’-- F’ 

To prove this, we need only note that, by the isotropic property, if, corresponding to 

the functions g,,g, E G, we have the curves fl,z = 0, obtained by a mutual rotation of 180° 
relative to the vector no (here, 1 (gi) = -1 (g,), a (gr) = a (&)), then dp (.&) = dP (g,). 

If the angle of attack p = arctg(I v, 1 )( v,]) is sufficiently small, so that maxo la(g)\< 
Jr’,- Pr and G* = G. then, using (2.91, we obtain Eq.(2.8) in the form 

(2.10) 

v = x_‘, vn = (v, nc) n’, vi E v - y, 

where v,.v! are the normal and tangential components of the initial velocity with respect 

to the basic surface f" : 0. 

For larqeangles fi, such that G* #G, supplementary terms appear in Eq.(2.10), so that 
in this case it is better to use (2.8) directly. 

Example. Consider the case of plane impact (n= 2). We choose the coordinates so that 

the basic surface has the equation zz?= 0. For simplicity, we shall assume that the set G 

consists of piecewise linear functions z2= g(zl), while at points of differentiability, 
1 g’ (q) 1 = tg a = const. The isotropic property here means that on average the number of "lifts" 

and "drops" of the curve 31 = g (4 are the same. 

If the impact is along the normal to the basic surface, Y[ =o, then only the second term 

in (2.10) is non-zero, so that we have 

Ax' = - (? + e) (Y, 1 cos2 ?.n’ (2.11) 

For oblique impact, YI+O. If we have b<rr? --a, then G* = G and AX' is given by 

(2.10) : 
Ax’ = - (I + e) [n” (u,* / vn j--l sill* x + 1 Y,, 1 cm* a) -L ?vL sin 2 a] @.I?) 

If b < n;2 - %, then the trajectory x (n can only hit the surface j(a)- 0 in the case 

of those functions R E G for which g'(x3) = --tg%ssgrl VI, This impact is similar to impact on a 

smooth inclined plane and is described by 

Ax' = - (1 + e)(\ ~1 j cm 2 - 1 v,, 1 sin a)(- sin 'IIS~U ~1. cos z) (2.13) 

3. Properties of the model. Let us state the main properties of impact with fric- 

tion, resulting from (2.8). 

lo. The direction of the impact forces remains unchanged during impact: it depends on 

the direction of the vector v but not on its modulus. A similar property is inherent in the 

axiomatic model /l-3/, though in the context of this the impact forces can change direction 

during impact. The contructive model is therefore simpler. 

20. For isotropic surfaces, in the ca*e VI = 0 we have hxl' = 0 from (2.10). If 

"I # 07 the vectors v1 and Axi' are collinear, in opposite directions. 

For the proof of this, we will show that the vector Ax', given by (2.8), lies in the 

plane II(v) through the vectors v and no. In fact, the set G can be divided into pairs of 

functions g,,, such that the vectors n,and n2 are symmetric about the plane II(V), while the 

surfaces fl=O and fl=O can be obtained from one another by a rotation about the vector 

n: by the isotropic property, dP(g,) =dP(&). Since (V.01) = (V, a*), the two functions Rl.2 

belong simultaneously to G*, while n, + n, E n(v), whence AX' E n (V). We see that VI and AX)' 

are in opposition because (v,N12 is greater in the case when vl and I are in opposition than 
O for the same surface rotated through 180 (see also (2.12) and (2.13)). 

3O. 1n the case of direct impact (VL = O), we have Newton's hypothesis: the coefficient 

of restitution of the relative velocity x in (1.2) is independent of iv,,\, while, by (2.10) r 
x depends, not only on the parameter e, which describes the viscoelastic properties of the 

deformations, but also on the nature of the microrelief (thus the quantity x in (2.11) is 
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equal to e when CL azz 0, and falls as a increases). 
Notice that the independence of x on v, is due to our choice of model of the impact 

forces in (2.3); for different models this property may not hold. 
4'. With vlfO, the coefficient of restitution x depends on the angle of attach $. 

rt follows from (2.10) that, with Iv,/ constant, x increases as [vi 1 increases; this 
property of the model is in accord with experimental data /ll/. Thus the constructive model 
is more realistic than the axiomatic model in this sense (the latter is based on the fact that 
x is independent of the initial data). 

Notice that, for sufficiently large values of the angle fi the coefficient x can, by 
(2.8), even be greater than unity. This effect is confirmed in practice by the appearance of 
normal displacements due to the micro-impacts that accompany the relative sliding of rough 
bodies, see /12/. 

5O. Impact friction is due to the deviation of the vector N from n': if there were no 
micro-relief, than g=O and (2.8) would take the form 

Ax’ = -(I + e) (v_ II@) no 

which is the same as the equation of impact of smooth bodies /l/. 
To find the coefficient of impact friction B we have to multiply the Ax’ given by (2.8) 

by the matrix A (x0) in order to obtain I in accordance with (1.1); we then obtain p = 1 I,/ ] / 
I 4% I, In the general case, therefore, p depends on the properties of the matrix A (x0), so 

that it is difficult to study the dependence of p on the initial conditions of impact. In 
the present paper we confine ourselves to the elementary case of the impact of a particle with 
a rough plane, when A (x0) is proportional to the identity matrix. Then, p is qiven by 

~=t~~~~/lA~~l 0.1) 

As applied to the example of Sect.2, Eq.(3.1) leads to these values of the coefficient 
of friction: 

P.= 

In Fig.1 we plot the curve 
The drop in the coefficient 

2tg~utg~/(tg*atgg~~ ff, B<@-a 
tg a. B 2 n/2 --a 

F= p&g@) (the continuous curve). 
of friction as 0 increases, when the set consists of con- 

tinuously differentiable functions, can be explained by the "shading" of the pieces of profile 
with the greatest slope (i.e., by their inaccessibility for trajectories with an angle of 
incidence close to a/2), see Fiq.2, and the broken curve of Fig.1. 

4. Stability of a particle on a vibrating surface. As an application of the 
constructive model of impact with friction, we consider the problem of the stability of motion 
of a particle that runs periodically along the axis of symmetry of a rough surface of revolu- 
tion, that performs harmonic oscillations along the vertical /6/. 
tion, the existence of this periodic motion follows from Property 
moves along the axis, the impact is direct, so that Ax,’ = 0. 

For our model of the fric- 
2 of Sect.3: as the particle 

F I -‘\ ’ \ _’ \ 
tga ._.f_._.-. 

/I 5/r m /I i 
r’ i 7\ 

0 Utga ts!J 
Fig.1 Fig.2 

Assume that the disturbances of the initial conditions lead to a small deviation of the 
particle from the vertical. We use Eqs.(2.10) to describe the impact. By these equations, 
the variation of the tangential component of the velocity is given by 

Ax,’ = --hv, 

2, = 2 (1 4 e) I( (are I) 1 
1; 

si$ a cos a dP (g) I/ { cos a dP {g) 
G 

(4.1) 

where at is a unit vector tangential to the basic surface. 
The form of (4.1) is the same as when describing impactin the presence of viscous fric- 

tion /6/, except that here, h may be greater than unity. 
If we discard the first term in (2.10), which is of second order with respect to the 

disturbances, we obtain for the coefficient of restitution x: 
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li-x=(l+e)~c"s~adP(g)/~c"sadP(g) 
G G 

(4.2) 

From (4.2), the impacts are of an elastic type only when the right-hand side is greater 

than or equal to unity. It can be shown that, in this case, h in (4.1) is not greater than 

two. 

The stability conditions for the periodic motions of a particle in the presence of fric- 

tion of the type (4.1) are obtained in /6/. They amount to taking a phase of the surface 

oscillations in which collisions occur, and to the inequality 

(4.3) 

where m is the ratio of the period of the periodic motion to the period of the surface oscil- 

lation, and p is the radius of curvature at a point lying on the axis of symmetry. As a 

result of (4.3), if h<l J-x, then B increases with h and the class of stable cases is 

accordingly widened. If Ifx<h<Z, then B <O and the periodic motions are unstable 

whatever the shapeofthe support surface. 
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